Abstract

Many researchers have proposed ultrasound imaging techniques for product inspection; however, most of these techniques are aimed at detecting the existence of flaws in products. The acquisition of an accurate three-dimensional image using ultrasound has the potential to be a useful product inspection tool. In this paper we apply the Envelope algorithm, which was originally proposed for accurate UWB (Ultra Wide-Band) radar imaging systems, to ultrasound imaging. We show that the Envelope algorithm results in image deterioration, because it is difficult for ultrasound measurements to achieve high signal to noise (S/N) ratio values as a result of a high level of noise and interference from the environment. To reduce errors, we propose two adaptive smoothing techniques that effectively stabilize the estimated image produced by the Envelope algorithm. An experimental study verifies that the proposed imaging algorithm has accurate 3-D imaging capability with a mean error of 6.1µm, where the transmit center frequency is 2.0MHz and the S/N ratio is 23dB. These results demonstrate the robustness of the proposed imaging algorithm compared with a conventional Envelope algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.