Abstract

BackgroundSelf-interacting proteins (SIPs), two or more copies of the protein that can interact with each other expressed by one gene, play a central role in the regulation of most living cells and cellular functions. Although numerous SIPs data can be provided by using high-throughput experimental techniques, there are still several shortcomings such as in time-consuming, costly, inefficient, and inherently high in false-positive rates, for the experimental identification of SIPs even nowadays. Therefore, it is more and more significant how to develop efficient and accurate automatic approaches as a supplement of experimental methods for assisting and accelerating the study of predicting SIPs from protein sequence information.ResultsIn this paper, we present a novel framework, termed GLCM-WSRC (gray level co-occurrence matrix-weighted sparse representation based classification), for predicting SIPs automatically based on protein evolutionary information from protein primary sequences. More specifically, we firstly convert the protein sequence into Position Specific Scoring Matrix (PSSM) containing protein sequence evolutionary information, exploiting the Position Specific Iterated BLAST (PSI-BLAST) tool. Secondly, using an efficient feature extraction approach, i.e., GLCM, we extract abstract salient and invariant feature vectors from the PSSM, and then perform a pre-processing operation, the adaptive synthetic (ADASYN) technique, to balance the SIPs dataset to generate new feature vectors for classification. Finally, we employ an efficient and reliable WSRC model to identify SIPs according to the known information of self-interacting and non-interacting proteins.ConclusionsExtensive experimental results show that the proposed approach exhibits high prediction performance with 98.10% accuracy on the yeast dataset, and 91.51% accuracy on the human dataset, which further reveals that the proposed model could be a useful tool for large-scale self-interacting protein prediction and other bioinformatics tasks detection in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.