Abstract

Numerous methods have been proposed for dealing with the serious practical problems associated with the conventional analysis of covariance method, with an emphasis on comparing two groups when there is a single covariate. Recently, Wilcox (2005a: section 11.8.2) outlined a method for handling multiple covariates that allows nonlinearity and heteroscedasticity. The method is readily extended to multiple groups, but nothing is known about its small-sample properties. This paper compares three variations of the method, each method based on one of three measures of location: means, medians and 20% trimmed means. The methods based on a 20% trimmed mean or median are found to avoid Type I error probabilities well above the nominal level, but the method based on medians can be too conservative in various situations; using a 20% trimmed mean gave the best results in terms of Type I errors. The methods are based in part on a running interval smoother approximation of the regression surface. Included are comments on required sample sizes that are relevant to the so-called curse of dimensionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.