7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1080/02664760601005053
Copy DOIJournal: Journal of Applied Statistics | Publication Date: Apr 1, 2007 |
Citations: 13 |
Numerous methods have been proposed for dealing with the serious practical problems associated with the conventional analysis of covariance method, with an emphasis on comparing two groups when there is a single covariate. Recently, Wilcox (2005a: section 11.8.2) outlined a method for handling multiple covariates that allows nonlinearity and heteroscedasticity. The method is readily extended to multiple groups, but nothing is known about its small-sample properties. This paper compares three variations of the method, each method based on one of three measures of location: means, medians and 20% trimmed means. The methods based on a 20% trimmed mean or median are found to avoid Type I error probabilities well above the nominal level, but the method based on medians can be too conservative in various situations; using a 20% trimmed mean gave the best results in terms of Type I errors. The methods are based in part on a running interval smoother approximation of the regression surface. Included are comments on required sample sizes that are relevant to the so-called curse of dimensionality.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.