Abstract

In previous work, a matched-field estimate of aircraft altitude from multiple over-the-horizon (OTH) radar dwells was presented. This approach exploits the altitude dependence of direct and surface reflected returns off the aircraft and the relative phase changes of these micro-multipath arrivals across radar dwells. Since this previous approach assumed high dwell-to-dwell predictability, it has been found to be sensitive to mismatch between modeled versus observed micro-multipath phase and amplitude changes from dwell-to-dwell. A generalized matched-field altitude estimate is presented here based on a state-space model that accounts for random ionospheric and target-motion effects that degrade the dwell-to-dwell predictability of target returns. The new formulation results in an efficient, robust recursive maximum likelihood (ML) estimation of aircraft altitude. Simulations suggest that the proposed technique can achieve accuracy within 5,000 ft of the true aircraft altitude, even with relatively high levels of uncertainty in modeling of dwell-to-dwell changes in the target return. A real data result is also presented to illustrate the technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.