Abstract

The robust almost periodic dynamical behavior is investigated for interval neural networks with mixed time-varying delays and discontinuous activation functions. Firstly, based on the definition of the solution in the sense of Filippov for differential equations with discontinuous right-hand sides and the differential inclusions theory, the existence and asymptotically almost periodicity of the solution of interval network system are proved. Secondly, by constructing appropriate generalized Lyapunov functional and employing linear matrix inequality (LMI) techniques, a delay-dependent criterion is achieved to guarantee the existence, uniqueness, and global robust exponential stability of almost periodic solution in terms of LMIs. Moreover, as special cases, the obtained results can be used to check the global robust exponential stability of a unique periodic solution/equilibrium for discontinuous interval neural networks with mixed time-varying delays and periodic/constant external inputs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.