Abstract

We propose a realizable device design for an all-electrical robust valley filter that utilizes spin protected topological interface states hosted on monolayer 2D-Xene materials with large intrinsic spin–orbit coupling. In contrast with conventional quantum spin-Hall edge states localized around the X-points, the interface states appearing at the domain wall between topologically distinct phases are either from the K or K^{prime} points, making them suitable prospects for serving as valley-polarized channels. We show that the presence of a large band-gap quantum spin-Hall effect enables the spatial separation of the spin–valley locked helical interface states with the valley states being protected by spin conservation, leading to robustness against short-range nonmagnetic disorder. By adopting the scattering matrix formalism on a suitably designed device structure, valley-resolved transport in the presence of nonmagnetic short-range disorder for different 2D-Xene materials is also analyzed in detail. Our numerical simulations confirm the role of spin–orbit coupling in achieving an improved valley filter performance with a perfect quantum of conductance attributed to the topologically protected interface states. Our analysis further elaborates clearly the right choice of material, device geometry and other factors that need to be considered while designing an optimized valleytronic filter device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.