Abstract

All-dielectric metasurfaces have seen a recent surge of interest as an alternative to plasmonic devices, due to low losses and desirable optical properties. High Q-factor quasi-bound state in the continuum resonances can be manufactured and manipulated via designed asymmetry in the nanostructures. The presented metasurface design, based on a slotted disk nanostructure, produces strong E-Field enhancement with good surface coverage external to the structure. The design transition from structure-in-air to structure-on-substrate in a water-based sensing medium is presented, along with the robust tunability and multiplexing potential of our fabricated resonances. Our structure maintains a high Q-factor and refractive index sensitivity over a wide wavelength range in the visible and near-IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.