Abstract

An instance of the Constraint Satisfaction Problem (CSP) is given by a family of constraints on overlapping sets of variables, and the goal is to assign values from a xed domain to the variables so that all constraints are satised. In the optimization version, the goal is to maximize the number of satised constraints. An approximation algorithm for CSP is called robust if it outputs an assignment satisfying an (1????g())-fraction of constraints on any (1????)-satisable instance, where the loss function g is such that g() ! 0 as ! 0. We study how the robust approximability of CSPs depends on the set of constraint relations allowed in instances, the so-called constraint language. All constraint languages admitting a robust polynomial-time algorithm (with some g) have been characterised by Barto and Kozik, with the general bound on the loss g being doubly exponential, specically g() = O((log log(1=))= log(1=)). It is natural to ask when a better loss can be achieved: in particular, polynomial loss g() = O(1=k) for some constant k. In this paper, we consider CSPs with a constraint language having a nearunanimity polymorphism. This general condition almost matches a known necessary condition for having a robust algorithm with polynomial loss. We give two randomized robust algorithms with polynomial loss for such CSPs: one works for any near-unanimity polymorphism and the parameter k in the loss depends on the size of the domain and the arity of the relations in ????, while the other works for a special ternary near-unanimity operation called dual discriminator with k = 2 for any domain size. In the latter case, the CSP is a common generalisation of Unique Games with a xed domain and 2-Sat. In the former case, we use the algebraic approach to the CSP. Both cases use the standard semidenite programming relaxation for CSP.

Highlights

  • The constraint satisfaction problem (CSP) provides a framework in which it is possible to express, in a natural way, many combinatorial problems encountered in computer science and AI [18, 20, 25]

  • We study CSPs that admit a robust algorithm with polynomial loss

  • We prove that any CSP with a constraint language having an NU polymorphism admits a randomized robust algorithm with loss O(\varepsi1/k), where k depends on the size of the domain

Read more

Summary

Introduction

The constraint satisfaction problem (CSP) provides a framework in which it is possible to express, in a natural way, many combinatorial problems encountered in computer science and AI [18, 20, 25]. Having an NU polymorphism is a sufficient condition for both Another family of problems CSP(\Gama ) with bounded pathwidth duality was shown to admit robust algorithms with polynomial loss in [23], where the parameter k depends on the pathwidth duality bound (and appears in the algebraic description of this family). This family includes languages not having an NU polymorphism of any arity; see [13, 14].

For a subset
Bi denote the set
The expected weight of violated constraints is at most
Dx and
10. Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call