Abstract

This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided.

Highlights

  • The spurred efforts to get an insight of the complex and opaque interactions among the levels of various neuronal networks is a major aspiration in neuroscience, because it would be an incredible abet to explore the foundation of normal and pathological brain functioning (Buzsaki, 2006; Alvarellos-Gonzalez et al, 2012; Aqil et al, 2012b)

  • Motivated by the aforementioned rationale, the aim of this paper is to investigate the dynamical behavior and synchronization of a network of different FHN neurons with unknown parameters, linked in a ring configuration, under direction-dependent coupling mediums

  • The rest of the manuscript are organized as follows: Section “Results and Discussion” discusses the main results, containing the modeling of a network of different FHN neurons with unknown parameters linked in a ring configuration under direction-dependent coupling, the design of a robust adaptive control mechanism, synchronization in the network without disturbance, synchronization in the network with disturbance, and numerical simulation results

Read more

Summary

Introduction

The spurred efforts to get an insight of the complex and opaque interactions among the levels of various neuronal networks is a major aspiration in neuroscience, because it would be an incredible abet to explore the foundation of normal and pathological brain functioning (Buzsaki, 2006; Alvarellos-Gonzalez et al, 2012; Aqil et al, 2012b). Brain has a number of complex functions and activities in relation to cognitive purposes (Santosa et al, 2013; Hong et al, 2015, 2017; Naseer et al, 2016; Nguyen et al, 2016). These brain activities can be somehow measured using various modalities and sensors in order to identify the intension of a subject (Turnip et al, 2011; Khan et al, 2014; Hong and Khan, 2017). In-depth research has been done on modeling, analysis, instrumentation, and control of external devices in the area of brain-computer interfaces (Khan and Hong, 2015, 2017; Kocaturk et al, 2015; Naseer and Hong, 2015; Ghafoor et al, 2017; Liu and Hong, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.