Abstract

To address the challenges of poor grid stability, intermittency of wind speed, lack of decision-making, and low economic benefits, many countries have set strict grid codes that wind power generators must accomplish. One of the major factors that can increase the efficiency of wind turbines (WTs) is the simultaneous control of the different parts in several operating area. A high performance controller can significantly increase the amount and quality of energy that can be captured from wind. The main problem associated with control design in wind generator is the presence of asymmetric in the dynamic model of the system, which makes a generic supervisory control scheme for the power management of WT complicated. Consequently, supervisory controller can be utilized as the main building block of a wind farm controller (offshore), which meets the grid code requirements and can increased the efficiency of WTs, the stability and intermittency problems of wind power generation. This Chapter proposes a new robust adaptive supervisory controller for the optimal management of a variable speed turbines (VST) and a battery energy storage system (BESS) in both regions (II and III) simultaneously under wind speed variation and grid demand changes. To this end, the second order sliding mode (SOSMC) with the adaptive gain super-twisting control law and fuzzy logic control (FLC) are used in the machine side, BESS side and grid side converters. The control objectives are fourfold: (i) Control of the rotor speed to track the optimal value; (ii) Maximum Power Point Tracking (MPPT) mode or power limit mode for adaptive control; (iii) Maintain the DC bus voltage close to its nominal value; (iv) Ensure: a smooth regulation of grid active and reactive power quantity, a satisfactory power factor correction and a high harmonic performance in relation to the AC source and eliminating the chattering effect. Results of extensive simulation studies prove that the proposed supervisory control system guarantees to track reference signals with a high harmonic performance despite external disturbance uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.