Abstract

Broadband wireless channels usually have the sparse nature. Based on the assumption of Gaussian noise model, adaptive filtering algorithms for reconstruction sparse channels were proposed to take advantage of channel sparsity. However, impulsive noises are often existed in many advance broadband communications systems. These conventional algorithms are vulnerable to deteriorate due to interference of impulsive noise. In this paper, sign least mean square algorithm (SLMS) based robust sparse adaptive filtering algorithms are proposed for estimating channels as well as for mitigating impulsive noise. By using different sparsity-inducing penalty functions, i.e., zero-attracting (ZA), reweighted ZA (RZA), reweighted L1-norm (RL1) and Lp-norm (LP), the proposed SLMS algorithms are termed as SLMS-ZA, SLMS-RZA, LSMS-RL1 and SLMS-LP. Simulation results are given to validate the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.