Abstract

In this paper, a robust adaptive self-organizing neuro-fuzzy control (RASNFC) scheme for tracking of unmanned underwater vehicle with uncertainties and the unknown dead-zone nonlinearity is proposed. The proposed RASNFC scheme comprises an estimation-based adaptive controller (EBAC) using a self-organizing neuro-fuzzy network (SNFN) and a robust controller. The EBAC controller is constructed with a novel sliding mode reaching law control framework, and the unknown dynamic function is identified by the SNFN approximator which is able to online self-construct a neuro-fuzzy network with dynamic structure by generating and pruning fuzzy rule. The robust controller is employed to provide the finite $$L_{2}$$ -gain property to cope with reconstruction errors such that the robustness of the entire closed-loop control system is enhanced. Theoretical analysis shows that tracking errors and their derivatives are asymptotically stable and all signals in the closed-loop system are bounded. Comparative simulation results demonstrate the effectiveness and superiority of the proposed RASNFC scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.