Abstract
SummaryIn this paper, the problem of neural adaptive dynamic surface quantized control is studied the first time for a class of pure‐feedback nonlinear systems in the presence of state and output constraint and unmodeled dynamics. The considered system is under the control of a hysteretic quantized input signal. Two types of one‐to‐one nonlinear mapping are adopted to transform the pure‐feedback system with different output and state constraints into an equivalent unconstrained pure‐feedback system. By designing a novel control law based on modified dynamic surface control technique, many assumptions of the quantized system in early literary works are removed. The unmodeled dynamics is estimated by a dynamic signal and approximated based on neural networks. The stability analysis indicates that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the output and all the states remain in the prescribed time‐varying or constant constraints. Two numerical examples with a coarse quantizer show that the proposed approach is effective for the considered system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.