Abstract

In this paper, a robust adaptive sliding mode control strategy of micro electro-mechanical system (MEMS) triaxial gyroscope using radial basis function (RBF) neural network is presented for the system identification of MEMS gyroscope. A key property of this scheme is that the prior knowledge of the upper bound of the system uncertainties is not required. An adaptive RBF neural network controller is used to learn the unknown upper bound of model uncertainties and external disturbances. The adaptive RBF neural network is incorporated into the adaptive sliding mode control in the Lyapunov sense, and the stability of the proposed adaptive neural sliding mode control can be established. The dynamics and angular velocities of gyroscope can be identified in real time. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive neural sliding mode control scheme, showing that the designed control system has better robust performance in its insensitivity to system nonlinearities; moreover, system parameters including angular velocity can be consistently estimated and tracking errors converge to zero asymptotically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.