Abstract

In this paper we present a robust adaptive control for a class of uncertain continuous time multiple input multiple output (MIMO) nonlinear systems. Multiple multi-layer neural networks are employed to approximate the uncertainty of the nonlinear functions, and robustifying control terms are used to compensate for approximation errors. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis so that, under appropriate assumptions, semi-global stability of the closed-loop system is guaranteed, and the tracking error asymptotically converges to zero. Simulations performed on a two-link robot manipulator illustrate the approach and its performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call