Abstract
Abstract A robust adaptive model predictive control (MPC) algorithm is presented for linear, time invariant systems with unknown dynamics and subject to bounded measurement noise. The system is characterized by an impulse response model, which is assumed to lie within a bounded set called the feasible system set. Online set-membership identification is used to reduce uncertainty in the impulse response. In the MPC scheme, robust constraints are enforced to ensure constraint satisfaction for all the models in the feasible set. The performance objective is formulated as a worst-case cost with respect to the modeling uncertainties. That is, at each time step an optimization problem is solved in which the control input is optimized for the worst-case plant in the uncertainty set. The performance of the proposed algorithm is compared to an adaptive MPC algorithm from the literature using Monte-Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.