Abstract

Robust adaptive fuzzy filters output feedback control of strict-feedback nonlinear systemsIn this paper, an adaptive fuzzy robust output feedback control approach is proposed for a class of single input single output (SISO) strict-feedback nonlinear systems without measurements of states. The nonlinear systems addressed in this paper are assumed to possess unstructured uncertainties, unmodeled dynamics and dynamic disturbances, where the unstructured uncertainties are not linearly parameterized, and no prior knowledge of their bounds is available. In recursive design, fuzzy logic systems are used to approximate unstructured uncertainties, and K-filters are designed to estimate unmeasured states. By combining backstepping design and a small-gain theorem, a stable adaptive fuzzy output feedback control scheme is developed. It is proven that the proposed adaptive fuzzy control approach can guarantee the all the signals in the closed-loop system are uniformly ultimately bounded, and the output of the controlled system converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by a simulation example and some comparisons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.