Abstract
As part of a novel approach to automatic sewer inspection, this paper presents a robust algorithm for automatic flow line detection. A large image repository is obtained from about 50,000 m sewers to represent the high variability of real world sewer systems. Automatic image processing combines Canny edge detection, Hough transform for straight lines and cost minimization using Dijkstra's shortest path algorithm. Assuming that flow lines are mostly smoothly connected horizontal structures, piecewise flow line delineation is reduced to a process of selecting adjacent line candidates. Costs are derived from the gap between adjacent candidates and their reliability. A single parameter α enables simple control of the algorithm. The detected flow line may precisely follow the segmented edges (α = 0.0) or minimize gaps at joints (α = 1.0). Both, manual and ground truth-based analysis indicate that α = 0.8 is optimal and independent of the sewer's material. The algorithm forms an essential step to further automation of sewer inspection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.