Abstract

This paper proposes a prefiltered observation-based adaptive filter algorithm that is robust against impulsive noise. Previous impulsive noise rejection algorithms were based on output error stochastic, so there was a trade-off relationship between impulsive noise detection and tracking performances. The proposed rejection algorithm is derived by using the statistics of the observed signal and the inequality such as the Schwarz and Young inequality in the absence of impulsive noise. From this, the proposed algorithm updates the weight vector only when the observed signal is not corrupted by impulsive noise. The proposed algorithm achieves the good tracking performance because it distinguishes between the system change and interruption of impulsive noise. In addition, the proposed algorithm has same performance without impulsive noise, compared with the normalized least-mean-square-type algorithm. Further, the proposed rejection algorithm could expand to various adaptive filtering structures, which suffer the performance degradation with impulsive noise, because it is easy to implement. Hence, the proposed algorithm is combined with the NLMS algorithm for dispersive systems and the proportionate NLMS algorithm for sparse systems. Simulation results show that the proposed algorithm achieves fast convergence rate, good tracking performance, and robustness under the impulsive noise environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.