Abstract
A feedback/feedforward controller architecture is developed that characterises the achievable reference tracking of real time inputs for both minimum phase and non-minimum phase systems with time delays, when there are no modelling errors or external disturbances. This characterisation is obtained by factoring the plant into its minimum phase, non-minimum phase, and time delay components, which are used to design two feedforward controllers that inject signals into two points of the feedback loop. Design constraints are provided that determine both the types of signals that may be achieved, and the feedforward controllers that will generate that output. Of course, in practice, both modelling errors and external disturbances will be present. In this case, we develop robust analysis tools that both guide the feedback controller design process, and provide rigorous robust tracking performance that guarantees for the overall resulting closed-loop system. Robust methods for designing the feedforward controllers are presented, and numerical examples are provided. The performance of this architecture depends strongly on the choice of design parameters, and the accuracy of the plant model used. Hence, the use of adaptation methods is also considered, and it is shown that they can readily be employed to improve the performance of this control methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.