Abstract
In this paper, direct adaptive state feedback control schemes are developed to solve the robust fault-tolerant compensation control problem for linear time-invariant continuous-time systems with actuator failures and external disturbances. While both eventual faults and upper bound of disturbances are unknown, the adaptive laws are proposed to estimate the unknown controller parameters online. Then, a class of robust adaptive state feedback controllers is constructed for automatically compensating the fault and the disturbance effects based on the information from the adaptive schemes. On the basis of Lyapunov stability theory, it is shown that the resulting adaptive closed-loop system can be guaranteed to be asymptotically stable in the presence of faults on actuators and disturbances. A numerical example of rocket fairing structural-acoustic model and its simulation results are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.