Abstract

AbstractThis paper is devoted to adaptive output tracking for a class of multi‐input multi‐output nonlinear systems with unknown non‐symmetric dead‐zone. With the aid of a matrix factorization and a similarity transformation, a robust adaptive dynamic surface control scheme is proposed and the difficulty caused by the control gain matrix and the dead‐zone is circumvented. By introducing a surface error modification and an initialization technique, we show that the performance of the tracking errors can be guaranteed. Moreover, the proposed scheme contains only one updated parameter at each design step, which significantly reduces the computational burden. It is proven that all signals of the closed‐loop system are semi‐globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.