Abstract

AbstractThis article introduces a robust adaptive controller–observer structure for robotic manipulators such that the need for joints speed measurement is removed. Besides, it is presumed that the system model has uncertainties and is subject to disturbances, and the proposed method must eliminate the impact of these factors on the system response. According to this, for the first time in the robotics field, a model-free scheme is developed based on the Bernstein–Stancu polynomial. The universal approximation property of the Bernstein–Stancu polynomial enables it to accurately estimate the lumped uncertainty, including unmodeled dynamics and disturbances. Moreover, to increase the efficiency of the controller–observer structure, adaptive rules have been proposed to update polynomial coefficients. The boundedness of all system errors is proven using the Lyapunov theorem. Finally, the proposed robust Adaptive controller–observer is applied on a planer robot, and the results are precisely analyzed. The results of the proposed approach are also compared with two state-of-art powerful approximation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.