Abstract

This paper presents a robust adaptive output feedback control design method for uncertain non-affine non-linear systems, which does not rely on state estimation. The approach is applicable to systems with unknown but bounded dimensions and with known relative degree. A neural network is employed to approximate the unknown modelling error. In fact, a neural network is considered to approximate and adaptively make ineffective unknown plant non-linearities. An adaptive law for the weights in the hidden layer and the output layer of the neural network are also established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, the robustness of the system against the approximation error of neural network is achieved with the aid of an additional adaptive robustifying control term. In addition, the tracking error is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately bounded, by using this additional control term. The proposed control algorithm is relatively straightforward and no restrictive conditions on the design parameters for achieving the systems stability are required. The effectiveness of the proposed scheme is shown through simulations of a non-affine non-linear system with unmodelled dynamics, and is compared with a second-sliding mode controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.