Abstract

In control of aerospace systems with large operating envelopes, it is often necessary to adjust the desired dynamics according to operating conditions. This paper presents a robust adaptive control architecture for linear parameter-varying (LPV) systems that allows for the desired dynamics to be systematically scheduled, while being able to handle a broad class of uncertainties, both matched and unmatched, which can depend on both time and states. The proposed controller adopts an L1 adaptive control architecture for designing the adaptive control law and peak-to-peak gain (PPG) minimization for designing the robust control law to mitigate the effect of unmatched uncertainties. Leveraging the PPG bound of a LPV system, we derive transient and steady-state performance bounds in terms of the input and output signals of the actual closed-loop system with respect to a nominal system. The proposed control architecture is applied to control the longitudinal motion of an F-16 aircraft operating within a large envelope. Simulation results using both LPV and fully nonlinear models validate the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.