Abstract

In this paper, adaptive control is studied for a class of single-input–single-output (SISO) nonlinear discrete-time systems in strict-feedback form with nonparametric nonlinear uncertainties of the Lipschitz type. To eliminate the effect of the nonparametric uncertainties in an unmatched manner, a novel future states prediction is designed using states information at previous steps to compensate for the effect of uncertainties at the current step. Utilizing the predicted future states, constructive adaptive control is developed to compensate for the effects of both parametric and nonparametric uncertainties such that global stability and asymptotical output tracking is achieved. The effectiveness of the proposed control law is demonstrated in the simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.