Abstract
A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.