Abstract

Coprime array exhibits many advantages over the uniform linear array (ULA) with the same number of physical sensors in resolution performance and interference suppression capability. In this study, the authors take the advantages of coprime array to improve the robustness of adaptive beamformer. In the coprime virtual ULA (CV-ULA), they prove that a constructed Toeplitz matrix can be taken as the sample covariance matrix from the perspective of virtual signal characteristics. The CV-ULA Capon spectrum estimator is modified to obtain the directions and powers of all impinging signals. Since the real directions of all impinging signals are located at different angular sectors, they form independent signal subspace for each impinging signal. They also assign independent steering vector mismatches for different impinging signals to obtain their real steering vectors. The steering vector mismatch of each impinging signal is independently obtained by solving its own convex optimisation problem. They reconstruct the interference-plus-noise covariance matrix (INCM) with precise steering vectors and powers of interference signals. The proposed weight vector is computed by combining the desired signal steering vector and the reconstructed INCM. Extensive simulations show that the proposed algorithm provides robustness against many types of model mismatches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call