Abstract

This brief describes robust adaptive tracking control systems for the attitude dynamics of a rigid body. Both the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations, such as Euler angles or quaternions. By designing an adaptive law for the inertia matrix of a rigid body, the proposed control system can asymptotically follow an attitude command without the knowledge of the inertia matrix, and it is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances. These are illustrated by the experimental results of the attitude dynamics of a quadrotor unmanned aerial vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call