Abstract
In the application of a receiver antenna array to wireless communications, a known signal preamble is used for estimating the propagation vector at the beginning of each data frame. The estimated propagation vector is then used in linear combining of array inputs for interference suppression and demodulation of a desired user's information data stream. Since the training preamble is usually very short, conventional training methods, which estimate the propagation vector based solely on the training preamble, may incur large estimation errors. In many wireless channels, the ambient noise is known to be decidedly non-Gaussian, due to impulsive phenomena. The conventional training methods may suffer further from such impulsive noise. Moreover, performance of linear combining techniques can degrade substantially in the presence of impulsive noise. We first propose a new technique for propagation vector estimation which exploits the whole frame of the received signal. It is shown that as the length of the signal frame tends to infinity, in the absence of noise, this method can recover the propagation vector of the desired user exactly, given a small number of training symbols for that user. We then develop robust techniques for propagation vector estimation and array combining in the presence of impulsive noise. These techniques are nonlinear in nature and are based on the M-estimation method. It is seen that the proposed robust methods offer performance improvement over linear techniques in non-Gaussian noise, with little attendant increase in computational complexity. Finally, we address the extension of the proposed techniques to dispersive channels with intersymbol interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.