Abstract

SummaryThis paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call