Abstract

A dual-loop current control is discussed for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> -type shunt active power filters (APFs), where inverter-side current feedback and point of common coupling (PCC) voltage feedforward both provide active damping (AD) effects for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> resonance. However, two ADs are equivalently applied to different elements of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> filter with narrow damping boundaries, which causes less robustness against grid impedance variation. Hence, this paper has presented a comprehensive approach to strengthen the system robustness against grid impedance variation. On the basis of phase compensated resonant unit, a delay-compensation scheme is firstly proposed to extend the damping boundary of inverter-side current feedback up to almost Nyquist frequency ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{s}/2$ </tex-math></inline-formula> ). Theory analysis considering PCC voltage feedforward indicates that the control system can keep robust to grid impedance when the initial <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LCL</i> resonance frequency falls between <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{s}/3$ </tex-math></inline-formula> and the extended damping boundary. Moreover, a typical weighted proportional-resonant feedforward scheme is suggested to prevent high-frequency resonant units from inducing system instability under a large grid impedance. We finally validate the effectiveness of the proposed approach through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call