Abstract

Slender flexible structures are vulnerable to vibrations under wind loads. The dynamic model of a frame-like structure is obtained by finite element approximation in this paper and used further for the design of an active control mechanism. The behavior of the structure is described by simplified linear equations. A linear quadratic regulator and an H 2 optimal control method are used for the suppression of the extended vibration effects. Structured uncertainties are considered to reflect the errors between the model and the reality. To accommodate directly the plant uncertainties and to obtain a best possible performance in the face of uncertainties a robust H ∞ optimal control for active control structure is used. The two latter robust controllers take into account as well incompleteness of the measured information, a fact that cannot be neglected in civil engineering, and lead to applicable designs of smart structures. The numerical simulation shows that vibrations can be suppressed by means of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.