Abstract

Milling chatters caused by the regenerative effect is one of the major limitations in increasing the machining efficiency and accuracy of milling operations. This paper studies robust active chatter control for milling processes with variable pitch cutters whose dynamics are governed by multidelay nonlinear differential equations. We propose a state feedback controller based on linear matrix inequality (LMI) approach that can enlarge multiple stability domains in the stability lobe diagram (SLD) while the controller gain is minimized. Numerical simulations of active magnetic bearing systems demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.