Abstract

Self-localization of smart portable devices serves as foundation for several novel applications. This work proposes a set of algorithms that enable a mobile device to passively determine its position relative to a known reference with centimeter precision, based exclusively on the capture of acoustic signals emitted by controlled sources around it. The proposed techniques tackle typical practical issues such as reverberation, unknown speed of sound, line-of-sight obstruction, clock skew, and the need for asynchronous operation. After their theoretical developments and off-line simulations, the methods are assessed as real-time applications embedded into off-the-shelf mobile devices operating in real scenarios. When line of sight is available, position estimation errors are at most 4 cm using recorded signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call