Abstract
Meaningful predictions for electric quadrupole (E2) observables from ab initio nuclear theory are necessary, if the ab initio description of collective correlations is to be confronted with experiment, as well as to provide predictive power for unknown E2 observables. However, converged results for E2 observables are notoriously challenging to obtain in ab initio no-core configuration interaction (NCCI) approaches. Matrix elements of the E2 operator are sensitive to the large-distance tails of the nuclear wave function, which converge slowly in an oscillator basis expansion. Similar convergence challenges beset ab initio prediction of the nuclear charge radius. We demonstrate that the convergence patterns of the E2 and radius observables are strongly correlated, and that meaningful predictions for the absolute scale of E2 observables may be made by calibrating to the experimentally-known ground-state charge radius. We illustrate by providing robust ab initio predictions for several E2 transition strengths and quadrupole moments in p-shell nuclei, in cases where experimental results are available for comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.