Abstract
Since camera and LiDAR sensors provide complementary information for the 3D semantic segmentation of intelligent vehicles, extensive efforts have been invested to fuse information from multi-modal data. Despite considerable advantages, fusion-based methods still have inevitable limitations: field-of-view disparity between two modal inputs, demanding precise paired data as inputs in both the training and inferring stages, and consuming more resources. These limitations pose significant obstacles to the practical application of fusion-based methods in real-world scenarios. Therefore, we propose a robust 3D semantic segmentation method based on multi-modal collaborative learning, aiming to enhance feature extraction and segmentation performance for point clouds. In practice, an attention based cross-modal knowledge distillation module is proposed to effectively acquire comprehensive information from multi-modal data and guide the pure point cloud network; then, a confidence-map-driven late fusion strategy is proposed to dynamically fuse the results of two modalities at the pixel-level to complement their advantages and further optimize segmentation results. The proposed method is evaluated on two public datasets (urban dataset SemanticKITTI and off-road dataset RELLIS-3D) and our unstructured test set. The experimental results demonstrate the competitiveness of state-of-the-art methods in diverse scenarios and a robustness to sensor faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.