Abstract

Indoor location-based services are becoming crucial parts of smart living, smart manufacturing, and all kinds of the Internet of Things. Visible light-based positioning (VLP) system is one of the cost-efficient and RF radiation-free solutions. However, conventional received signal strength (RSS)-based VLP system suffers inaccurate modeling and intensity variations, especially in 3-D positioning cases. Hence, we propose an artificial neural network (ANN)-based approach for accurate modeling and positioning with on-site data. Likewise, the proposed approach is also proved applicable to accurate modeling of initial time delay distribution of LED chips in VLP systems based on phase differences of arrival (PDOA). To improve the robustness by mitigating the impact of intensity variations, we introduce a selection strategy utilizing both PDOA and RSS measurements. Through simulations, we demonstrate the feasibility of ANN-based on-site modeling and present the robustness of the hybrid positioning system under various levels of intensity variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.