Abstract
Astronomical time series often have non-uniform sampling in time, or irregular cadences, with long gaps separating clusters of observations. Some of these data sets are also explicitly non-Gaussian with respect to the expected model fit, or the simple mean. The standard Lomb–Scargle periodogram is based on the least squares solution for a set of test periods and, therefore, is easily corrupted by a subset of statistical outliers or an intrinsically non-Gaussian population. It can produce completely misleading results for heavy-tailed distribution of residuals. We propose a robust 1-norm periodogram technique, which is based on the principles of robust statistical estimation. This technique can be implemented in weighted or unweighted options. The method is described in detail and compared with the classical least squares periodogram on a set of astrometric VLBI measurements of the ICRF quasar IERS B0642+449. It is uniformly applied to a collection of 259 ICRF3 quasars each with more than 200 epoch VLBI measurements, resulting in a list of 49 objects with quasi-periodic position changes above the 3σ level, which warrant further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Astronomical Society of the Pacific
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.