Abstract

The integration of robotics into gastrointestinal (GI) endoscopy represents a transformative advancement and bears the potential to bridge the gap between traditional limitations by offering unprecedented precision and control in diagnostic and therapeutic procedures. This review explores the historical progression, current applications and future potential of robotic platforms in GI endoscopy. Originally designed for surgical applications, robotic systems have expanded their reach into endoscopy, potentially enhancing procedural accuracy and reducing ergonomic strain on practitioners. Natural Orifice Transluminal Endoscopic Surgery (NOTES) emerged as a promising technique, leveraging natural orifices to perform minimally invasive surgeries. Despite its initial potential, several factors, including limitations of the available instrumentations and lack of reliable closure techniques, hindered its widespread adoption and progress. Conventional endoscopic tools often fall short in terms of triangulation, traction and degrees of freedom, necessitating the adoption of robotic interventions. Over recent decades, robotic endoscopy has significantly evolved, focusing on both diagnostic and complex therapeutic procedures such as endoscopic sub-mucosal dissection (ESD) and endoscopic full-thickness resection (EFTR). Various robotic platforms demonstrate enhanced safety and efficiency in GI procedures. As the field progresses, the emphasis on clinical validation, advanced training and the exploration of new applications remains crucial. Continuous innovation in robotic technology and endoscopic techniques promises to overcome existing limitations, further revolutionizing the management of GI diseases and improving patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.