Abstract

Advanced endoscopy procedures are technically challenging and require extensive training. Recent technological advances made in computer science and robotics have the potential to enhance the performance of complex intraluminal and transluminal interventions and potentially optimize precision and safety. This review covers the different technologies used for robot-assisted interventions in the gastrointestinal tract, organized according to their clinical availability, and focusing on flexible endoscopy-based systems. In the curvilinear gastrointestinal anatomy, robotic technology can enhance flexible endoscopes to augment effectiveness, safety, and therapeutic capabilities, particularly for complex intraluminal and transluminal interventions. Increased visual angles, increased degrees of freedom of instrumentation, optimized navigation, and locomotion, which may lead to a reduced physician learning curve and workload, are promising achievements with the promise to ultimately replace conventional endoscopy techniques for screening and therapeutic endoscopy. The majority of these devices are not commercially available yet. The best clinical applications are also currently being researched. Nonetheless, robotic assistance may encourage surgeons to use flexible endoscopes to administer surgical therapies and increase interest among gastroenterologists in advanced therapies. Robotics may be a means to overcome the technical obstacles of incisionless natural orifice procedures and favor an increased adoption of complex endoscopic procedures such as third-space therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call