Abstract
This paper studies the sloshing suppression problem in point-to-point liquid container transfer via a Prismatic–Prismatic–Revolute robot. A multi-mass–spring model is introduced for the characterization of the most prominent liquid-sloshing modes. The control inputs are two forces and a torque applied to the prismatic joints and the revolute joint, respectively. The control objective is to control the robot end-effector movement while suppressing the sloshing modes. A nonlinear mathematical model that reflects all of these specifications is first derived. Then, a Lyapunov-based nonlinear feedback controller is designed to achieve the control objective. Finally, a simulation example is included to demonstrate the effectiveness of the controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.