Abstract

With the rapid development of the aerospace industry, the quality inspection of complex curved components, such as aero-engine blades, is becoming increasingly strict. In contrast with other NDT methods, ultrasonic testing is easier to automate, while offering higher accuracy and efficiency in thickness measuring. To solve the challenge of the automated NDT inspection of aero-engine blades, in this study, an ultrasonic inspection system with a six degree of freedom (DOF) was proposed for industrial robots. Additionally, a defect detection model and a thickness detection method were proposed for the robotic ultrasonic inspection system, based on the thickness variation of the aero-engine blade. Through the quantitative analysis on engine blades with prefabricated defects and curved test blocks with stepped thicknesses, it can be concluded that our system is able to achieve high accuracy in defect detection and thickness measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call