Abstract

Harrisia cactus, Harrisia martinii, is a serious weed affecting hundreds of thousands of hectares of native pasture in the Australian rangelands. Despite the landmark success of past biological control agents for the invasive weed and significant investment in its eradication by the Queensland Government (roughly $156M since 1960), it still takes hold in the cooler rangeland environments of northern New South Wales and southern Queensland. In the past decade, landholders with large infestations in these locations have spent approximately $20,000 to $30,000 per annum on herbicide control measures to reduce the impact of the weed on their grazing operations. Current chemical control requires manual hand spot spraying with high quantities of herbicide for foliar application. These methods are labour intensive and costly, and in some cases inhibit landholders from performing control at all. Robotic spot spraying offers a potential solution to these issues, but existing solutions are not suitable for the rangeland environment. This work presents the methods and results of an in situ field trial of a novel robotic spot spraying solution, AutoWeed, for treating harrisia cactus that (1) more than halves the operation time, (2) can reduce herbicide usage by up to 54% and (3) can reduce the cost of herbicide by up to $18.15 per ha compared to the existing hand spraying approach. The AutoWeed spot spraying system used the MobileNetV2 deep learning architecture to perform real time spot spraying of harrisia cactus with 97.2% average recall accuracy and weed knockdown efficacy of up to 96%. Experimental trials showed that the AutoWeed spot sprayer achieved the same level of knockdown of harrisia cactus as traditional hand spraying in low, medium and high density infestations. This work represents a significant step forward for spot spraying of weeds in the Australian rangelands that will reduce labour and herbicide costs for landholders as the technology sees more uptake in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.