Abstract

The emerging millimeter-wave (mmWave) networking technology promises to unleash a new wave of multi-Gbps wireless applications. However, due to high directionality of the mmWave radios, maintaining stable link connection remains an open problem. Users’ slight orientation change, coupled with motion and blockage, can easily disconnect the link. In this paper, we propose RoMil, a robotic mmWave relay that optimizes network coverage through wireless sensing and autonomous motion/rotation planning. The robot relay automatically constructs the geometry/reflectivity of the environment, by estimating the geometries of all signal paths. It then navigates itself along an optimal moving trajectory, and ensures continuous connectivity for the client despite environment/human dynamics. We have prototyped RoMil on a programmable robot carrying a commodity 60 GHz radio. Our field trials demonstrate that RoMil can achieve nearly full coverage in dynamic environment, even with constrained speed and mobility region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.