Abstract

The normal positioning error hinders the use of magnetorheological finishing (MRF) in robotic polishing. In this paper, the influence of robotic normal positioning error on the MRF removal rate is revealed, and a force-controlled end-effector for the robotic MRF process is presented. The developed end-effector is integrated into a six-axis industrial robot, and the robot positions the end-effector while the end-effector realizes the constant force control. A fused silicon mirror is polished, and the result shows that the proposed device effectively compensates for robotic normal positioning error and simultaneously maintains the stability of the polishing process. After deterministic polishing, the PV (peak to valley) of the figure is reduced from 126.56nm to 56.95nm, and the RMS (root mean square) is reduced from 22.15 nm to 7.59 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.