Abstract

This paper presents an online model-free reinforcement learning based controller realized by approximate dynamic programming for a robotic knee as part of a human-machine system. Traditionally, prosthesis wearers’ gait performance is improved by manually tuning the impedance parameters. In this paper, we show that the parameter tuning problem can be formulated as an optimal control problem and thus solved by dynamic programming. Toward this goal, we constructed an quadratic instantaneous cost, which resulted in a value function that could be approximated by a neural network. The control policy is then solved by the least-squared method iteratively, a framework of which we refer to as approximate policy iteration. We performed extensive simulations based on prosthetic kinetics and human performance data extracted from real human subjects. Our results show that the proposed parameter tuning algorithm can be readily used for adaptive optimal tuning of prosthetic knee control parameters and the tuning process is time and sample efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.