Abstract
The study design is retrospective, multi-surgeon, single-center review. The objective is to evaluate complication rates, revision rates, and accuracy grading for robotic-guided S2 alar-iliac (S2AI) screws. Sixty-five consecutive patients underwent S2AI fixation (118 screws) as part of a posterior spine fusion using robotic-guidance. Screws were placed percutaneously in 14 cases and 51 were placed in an open fashion by three board-certified spine surgeons using the Mazor core technology robotic systems (Mazor X, n = 42; Mazor XSE, n = 23). Medical charts were retrospectively reviewed for revisions and complications. All patients were followed for 90days or greater. Postoperative CT scans were obtained in 22 of the 51 patients, allowing for 46 screws to be reviewed by an independent neuroradiologist who graded the screws for accuracy. There were no intraoperative or postoperative complications associated with S2AI screw placement. There were no revisions found to be related to the S2AI screw placement. All 46 screws evaluated with postoperative CT scans were reported as being at the highest level of accuracy, grade A, with a breach distance of 0mm (no breach). The robotic-guided technique for S2AI screw placement is a reliable method to achieving pelvic fixation with low complication and revision rates. In addition, a high degree of accuracy can be achieved without relying on visible and tactile landmarks needed for the freehand technique or the additional radiation associated with fluoroscopic-guidance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.