Abstract

This paper presents a real-time motion planning method for biomimetic robotic fish with kinematic constraints. Based on successfully developing a robotic fish prototype, we step further to study navigation problem of the robotic fish in dynamic water environments. Considering the inherent kinematic constraints of the robotic fish, a new control law is proposed to stabilize the robotic fish on a specified position. On dealing with the collision avoidance problem among multiple robotic fish, limit-cycle approach is employed with which the robotic fish can avoid one another smoothly and efficiently. The effectiveness of the proposed method is verified through experiments conducted with two robotic fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.