Abstract

Emergency neurosurgical care in lower-middle-income countries faces pronounced shortages in neurosurgical personnel and infrastructure. In instances of traumatic brain injury (TBI), hydrocephalus, and subarachnoid hemorrhage, the timely placement of external ventricular drains (EVDs) strongly dictates prognosis and can provide necessary stabilization before transfer to a higher-level center of care that has access to neurosurgery. Accordingly, the authors have developed an inexpensive and portable robotic navigation tool to allow surgeons who do not have explicit neurosurgical training to place EVDs. In this article, the authors aimed to highlight income disparities in neurosurgical care, evaluate access to CT imaging around the world, and introduce a novel, inexpensive robotic navigation tool for EVD placement. By combining the worldwide distribution of neurosurgeons, CT scanners, and gross domestic product with the incidence of TBI, meningitis, and hydrocephalus, the authors identified regions and countries where development of an inexpensive, passive robotic navigation system would be most beneficial and feasible. A prototype of the robotic navigation system was constructed using encoders, 3D-printed components, machined parts, and a printed circuit board. Global analysis showed Montenegro, Antigua and Barbuda, and Seychelles to be primary candidates for implementation and feasibility testing of the novel robotic navigation system. To validate the feasibility of the system for further development, its performance was analyzed through an accuracy study resulting in accuracy and repeatability within 1.53 ± 2.50 mm (mean ± 2 × SD, 95% CI). By considering regions of the world that have a shortage of neurosurgeons and a high incidence of EVD placement, the authors were able to provide an analysis of where to prioritize the development of a robotic navigation system. Subsequently, a proof-of-principle prototype has been provided, with sufficient accuracy to target the ventricles for EVD placement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.